Intelligent Water-Alternating-Gas Process using Downhole Control Valve (WAG-CV): Concepts, Tools and Simulations

Steve Knabe, Director, Halliburton Consulting
DISCLAIMER 2019

The contents of this presentation are for informational purposes only. Halliburton** makes no representation or warranty about the accuracy or suitability of the information provided in this presentation and any related materials. Nothing in this presentation constitutes professional advice or consulting services. No contractual relationship with Halliburton is established by attending or viewing this presentation. No rights to intellectual property of Halliburton are granted through this presentation. The opinions expressed in this presentation are those of the author and do not necessarily represent the views of Halliburton. **Halliburton means Halliburton Energy Services, Inc., Landmark Graphics Corporation, and their affiliates.
Agenda

- The challenge: increasing oil recovery in Water Alternating Gas (WAG) EOR projects
- Proposed solution: Water Alternating Gas Control Valves (WAG-CV)
- Optimization process
- Simulation results
- Technical paper and patent
What drives the needs for EOR?

Mature Fields Snapshot

70% Amount of worldwide oil and gas production from mature fields

35% Average worldwide recovery factor for oil. Up to 70% in North Sea

1% Recovery factor increase needed for additional 2-year global oil and gas supply
The Challenge with Traditional WAG EOR Projects: Managing Heterogeneity and Increasing Recovery

- A traditional WAG flood involves injecting water for ~6 months followed by ~3-6 months of injecting gas
- 10 percent more oil recovery is expected from a traditional WAG than a water flood alone
- However, traditional WAGs face challenges:
 - Reservoir heterogeneity can result in inefficient sweep, reducing oil recovery
 - Injection rates are difficult to control along a lateral injector
- The proposed patented WAG-CV system addresses these challenges by enabling injection of water and gas selectively in different segments of a well
- This presentation shows the results of simulation in Nexus software to evaluate the potential benefits of WAG-CV in a “generic” horizontal injector and producer. The same principles apply to vertical or deviated injectors and producers
Proposed Solution: Water Alternating Gas Control Valves (WAG-CV)
Proposed Solution: WAG-CV
WAG-CV Proposed Optimization Process

Water rate

Gas rate

Gas and water are injected continually at wellhead

Water is injected continually downhole

Gas is injected through zones

- Downhole valve controls water rate per zones

Multiple Optimization Technique

At time step 1...

- Maximize oil and minimize water in each zone.
- Maximize oil and minimize water. Lower water cuts.

- Optimize Surface Gas Rate
- Optimize Surface Water Rate
- Optimize Valve Setting
- Determine gas injection time
- Determine water injection time
- Select Gas Zones On/off
Patented WAG-CV Completion Schematic
Saturations Based on Simulation

Water saturation

Gas saturation
Simulated Slug Injection Profile in Zone 1

Water Injection (STB/DAY) / Gas Injection (MSCF/DAY)
Simulated Slug Injection Profile in Zone 2

Water Injection (STB/DAY) / Gas Injection (MSCF/DAY)

Time (Days)
Simulated Slug Injection Profile in Zone 3

Water Injection (STB/DAY) / Gas Injection (MSCF/DAY)

Time (Days)
Simulated Slug Injection Profile in Zone 4

- Water Injection (STB/DAY)
- Gas Injection (MSCF/DAY)

Water Injection Graph:
- Y-axis: Water Injection (STB/DAY)
- X-axis: Time (Days)

Gas Injection Graph:
- Y-axis: Gas Injection (MSCF/DAY)
- X-axis: Time (Days)
Simulated Slug Injection Profile in Zone 5

- **Water Injection (STB/DAY)**
- **Gas Injection (MSCF/DAY)**

Water Injection (STB/DAY) / Gas Injection (MSCF/DAY) vs. Time (Days)
Simulated Relationship of Gas Versus Water Injection

Water/Gas Ratio

Time (Days)
Results: Oil Recovery Expectation Based on Simulation

- **Depletion drive**: 12%
- **Gas Injection**: 23%
- **Water Injection**: 30%
- **WAG**: 37%
- **WAG-CV**: 42%
Technical Paper and Patent

- Gustavo Carvajal, Michael Konopczynski, Alejandro Chacon and Steven Knabe Method, System and Optimization Technique to Improve Oil Reservoir Recovery in the Water-Alternating-Gas Injection Process by Using Downhole Control Valves (WAG-CV).